Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Plant Biol ; 23(1): 585, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37993808

RESUMEN

BACKGROUND: H2A.X is an H2A variant histone in eukaryotes, unique for its ability to respond to DNA damage, initiating the DNA repair pathway. H2A.X replacement within the histone octamer is mediated by the FAcilitates Chromatin Transactions (FACT) complex, a key chromatin remodeler. FACT is required for DEMETER (DME)-mediated DNA demethylation at certain loci in Arabidopsis thaliana female gametophytes during reproduction. Here, we sought to investigate whether H2A.X is involved in DME- and FACT-mediated DNA demethylation during reproduction. RESULTS: H2A.X is encoded by two genes in Arabidopsis genome, HTA3 and HTA5. We generated h2a.x double mutants, which displayed a normal growth profile, whereby flowering time, seed development, and root tip organization, S-phase progression and proliferation were all normal. However, h2a.x mutants were more sensitive to genotoxic stress, consistent with previous reports. H2A.X fused to Green Fluorescent Protein (GFP) under the H2A.X promoter was highly expressed especially in newly developing Arabidopsis tissues, including in male and female gametophytes, where DME is also expressed. We examined DNA methylation in h2a.x developing seeds and seedlings using whole genome bisulfite sequencing, and found that CG DNA methylation is decreased genome-wide in h2a.x mutant endosperm. Hypomethylation was most striking in transposon bodies, and occurred on both parental alleles in the developing endosperm, but not the embryo or seedling. h2a.x-mediated hypomethylated sites overlapped DME targets, but also included other loci, predominately located in heterochromatic transposons and intergenic DNA. CONCLUSIONS: Our genome-wide methylation analyses suggest that H2A.X could function in preventing access of the DME demethylase to non-canonical sites. Overall, our data suggest that H2A.X is required to maintain DNA methylation homeostasis in the unique chromatin environment of the Arabidopsis endosperm.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Metilación de ADN/genética , Endospermo/genética , Endospermo/metabolismo , Histonas/genética , Histonas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cromatina , Regulación de la Expresión Génica de las Plantas
2.
Proc Natl Acad Sci U S A ; 120(46): e2310126120, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37934824

RESUMEN

PIN-FORMEDs (PINs) are auxin efflux carriers that asymmetrically target the plasma membrane (PM) and are critical for forming local auxin gradients and auxin responses. While the cytoplasmic hydrophilic loop domain of PIN (PIN-HL) is known to include some molecular cues (e.g., phosphorylation) for the modulation of PIN's intracellular trafficking and activity, the complexity of auxin responses suggests that additional regulatory modules may operate in the PIN-HL domain. Here, we have identified and characterized a PIN-HL-interacting protein (PIP) called FORMATION OF APLOID AND BINUCLEATE CELL 1C (FAB1C), a phosphatidylinositol-3-phosphate 5-kinase, which modulates PIN's lytic trafficking. FAB1C directly interacts with PIN-HL and is required for the polarity establishment and vacuolar trafficking of PINs. Unphosphorylated forms of PIN2 interact more readily with FAB1C and are more susceptible to vacuolar lytic trafficking compared to phosphorylated forms. FAB1C also affected lateral root formation by modulating the abundance of periclinally localized PIN1 and auxin maximum in the growing lateral root primordium. These findings suggest that a membrane-lipid modifier can target the cargo-including vesicle by directly interacting with the cargo and modulate its trafficking depending on the cargo's phosphorylation status.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Ácidos Indolacéticos/metabolismo , Raíces de Plantas/metabolismo , Transporte de Proteínas
3.
Res Sq ; 2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37333181

RESUMEN

Background: H2A.X is an H2A variant histone in eukaryotes, unique for its ability to respond to DNA damage, initiating the DNA repair pathway. H2A.X replacement within the histone octamer is mediated by the FAcilitates Chromatin Transactions (FACT) complex, a key chromatin remodeler. FACT is required for DEMETER (DME)-mediated DNA demethylation at certain loci in Arabidopsis thaliana female gametophytes during reproduction. Here, we sought to investigate whether H2A.X is involved in DME- and FACT-mediated DNA demethylation during reproduction. Results: H2A.X is encoded by two genes in Arabidopsis genome, HTA3 and HTA5. We generated h2a.x double mutants, which displayed a normal growth profile, whereby flowering time, seed development, and root tip organization, S-phase progression and proliferation were all normal. However, h2a.x mutants were more sensitive to genotoxic stress, consistent with previous reports. H2A.X fused to Green Fluorescent Protein (GFP) under the H2A.X promoter was highly expressed especially in newly developing Arabidopsis tissues, including in male and female gametophytes, where DME is also expressed. We examined DNA methylation in h2a.x developing seeds and seedlings using whole genome bisulfite sequencing, and found that CG DNA methylation is decreased genome-wide in h2a.x mutant seeds. Hypomethylation was most striking in transposon bodies, and occurred on both parental alleles in the developing endosperm, but not the embryo or seedling. h2a.x-mediated hypomethylated sites overlapped DME targets, but also included other loci, predominately located in heterochromatic transposons and intergenic DNA. Conclusions: Our genome-wide methylation analyses suggest that H2A.X could function in preventing access of the DME demethylase to non-canonical sites. Alternatively, H2A.X may be involved in recruiting methyltransferases to those sites. Overall, our data suggest that H2A.X is required to maintain DNA methylation homeostasis in the unique chromatin environment of the Arabidopsis endosperm.

4.
Plant Cell ; 33(11): 3513-3531, 2021 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-34402905

RESUMEN

PIN-FORMED (PIN)-mediated polar auxin transport (PAT) is involved in key developmental processes in plants. Various internal and external cues influence plant development via the modulation of intracellular PIN polarity and, thus, the direction of PAT, but the mechanisms underlying these processes remain largely unknown. PIN proteins harbor a hydrophilic loop (HL) that has important regulatory functions; here, we used the HL as bait in protein pulldown screening for modulators of intracellular PIN trafficking in Arabidopsis thaliana. Calcium-dependent protein kinase 29 (CPK29), a Ca2+-dependent protein kinase, was identified and shown to phosphorylate specific target residues on the PIN-HL that were not phosphorylated by other kinases. Furthermore, loss of CPK29 or mutations of the phospho-target residues in PIN-HLs significantly compromised intracellular PIN trafficking and polarity, causing defects in PIN-mediated auxin redistribution and biological processes such as lateral root formation, root twisting, hypocotyl gravitropism, phyllotaxis, and reproductive development. These findings indicate that CPK29 directly interprets Ca2+ signals from internal and external triggers, resulting in the modulation of PIN trafficking and auxin responses.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas Serina-Treonina Quinasas/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo
5.
Proc Natl Acad Sci U S A ; 118(29)2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34266952

RESUMEN

The flowering plant life cycle consists of alternating haploid (gametophyte) and diploid (sporophyte) generations, where the sporophytic generation begins with fertilization of haploid gametes. In Arabidopsis, genome-wide DNA demethylation is required for normal development, catalyzed by the DEMETER (DME) DNA demethylase in the gamete companion cells of male and female gametophytes. In the sporophyte, postembryonic growth and development are largely dependent on the activity of numerous stem cell niches, or meristems. Analyzing Arabidopsis plants homozygous for a loss-of-function dme-2 allele, we show that DME influences many aspects of sporophytic growth and development. dme-2 mutants exhibited delayed seed germination, variable root hair growth, aberrant cellular proliferation and differentiation followed by enhanced de novo shoot formation, dysregulation of root quiescence and stomatal precursor cells, and inflorescence meristem (IM) resurrection. We also show that sporophytic DME activity exerts a profound effect on the transcriptome of developing Arabidopsis plants, including discrete groups of regulatory genes that are misregulated in dme-2 mutant tissues, allowing us to potentially link phenotypes to changes in specific gene expression pathways. These results show that DME plays a key role in sporophytic development and suggest that DME-mediated active DNA demethylation may be involved in the maintenance of stem cell activities during the sporophytic life cycle in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Regulación de la Expresión Génica de las Plantas , Células Germinativas de las Plantas/enzimología , Meristema/enzimología , N-Glicosil Hidrolasas/metabolismo , Transactivadores/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Diferenciación Celular , Proliferación Celular , Células Germinativas de las Plantas/citología , Meristema/genética , Meristema/crecimiento & desarrollo , N-Glicosil Hidrolasas/genética , Transactivadores/genética
6.
Sci Rep ; 9(1): 11181, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31371805

RESUMEN

Root hairs form a substantial portion of the root surface area. Compared with their nutritional function, the physical function of root hairs has been poorly characterised. This study investigates the physical role of root hairs of Arabidopsis thaliana seedlings in interaction of the root with water and soil and in plant survival upon soil disruption. Five transgenic lines with different root hair lengths were used to assess the physical function of root hairs. Upon soil disruption by water falling from a height (mimicking rainfall), long-haired lines showed much higher anchorage rates than short-haired lines. The root-pulling test revealed that a greater amount of soil adhered to long-haired roots than to short-haired roots. When seedlings were pulled out and laid on the soil surface for 15 d, survival rates of long-haired seedlings were higher than those of short-haired seedlings. Moreover, the water holding capacity of roots was much greater among long-haired seedlings than short-haired seedlings. These results suggest that root hairs play a significant role in plant survival upon soil disruption which could be fatal for young seedlings growing on thin soil surface with a short primary root and root hairs as the only soil anchoring system.


Asunto(s)
Arabidopsis/fisiología , Raíces de Plantas/citología , Plantones/fisiología , Suelo , Raíces de Plantas/fisiología
7.
Plant Physiol ; 180(2): 1185-1197, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30948554

RESUMEN

Plants exhibit diverse polar behaviors in response to directional and nondirectional environmental signals, termed tropic and nastic movements, respectively. The ways in which plants incorporate directional information into tropic behaviors is well understood, but it is less well understood how nondirectional stimuli, such as ambient temperatures, specify the polarity of nastic behaviors. Here, we demonstrate that a developmentally programmed polarity of auxin flow underlies thermo-induced leaf hyponasty in Arabidopsis (Arabidopsis thaliana). In warm environments, PHYTOCHROME-INTERACTING FACTOR4 (PIF4) stimulates auxin production in the leaf. This results in the accumulation of auxin in leaf petioles, where PIF4 directly activates a gene encoding the PINOID (PID) protein kinase. PID is involved in polarization of the auxin transporter PIN-FORMED3 to the outer membranes of petiole cells. Notably, the leaf polarity-determining ASYMMETRIC LEAVES1 (AS1) directs the induction of PID to occur predominantly in the abaxial petiole region. These observations indicate that the integration of PIF4-mediated auxin biosynthesis and polar transport, and the AS1-mediated developmental shaping of polar auxin flow, coordinate leaf thermonasty, which facilitates leaf cooling in warm environments. We believe that leaf thermonasty is a suitable model system for studying the developmental programming of environmental adaptation in plants.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Movimiento , Hojas de la Planta/fisiología , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico/efectos de la radiación , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Genes de Plantas , Gravitación , Ácidos Indolacéticos/metabolismo , Luz , Modelos Biológicos , Hojas de la Planta/efectos de la radiación , Temperatura , Transcripción Genética/efectos de la radiación
8.
Front Plant Sci ; 10: 1808, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32082353

RESUMEN

PIN-FORMED (PIN) auxin efflux carriers with a long central hydrophilic loop (long PINs) have been implicated in organogenesis. However, the role of short hydrophilic loop PINs (short PINs) in organogenesis is largely unknown. In this study, we investigated the role of a short PIN, PIN8, in lateral root (LR) development in Arabidopsis thaliana. The loss-of-function mutation in PIN8 significantly decreased LR density, mostly by affecting the emergence stage. PIN8 showed a sporadic expression pattern along the root vascular cells in the phloem, where the PIN8 protein predominantly localized to intracellular compartments. During LR primordium development, PIN8 was expressed at the late stage. Plasma membrane (PM)-localized long PINs suppressed LR formation when expressed in the PIN8 domain. Conversely, an auxin influx carrier, AUX1, restored the wild-type (WT) LR density when expressed in the PIN8 domain of the pin8 mutant root. Moreover, LR emergence was considerably inhibited when AXR2-1, the dominant negative form of Aux/IAA7, compromised auxin signaling in the PIN8 domain. Consistent with these observations, the expression of many genes implicated in late LR development was suppressed in the pin8 mutant compared with the WT. Our results suggest that the intracellularly localized PIN8 affects LR development most likely by modulating intracellular auxin translocation. Thus, the function of PIN8 is distinctive from that of PM-localized long PINs, where they generate local auxin gradients for organogenesis by conducting cell-to-cell auxin reflux.

9.
Front Plant Sci ; 9: 372, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29619039

RESUMEN

Auxin signaling is finalized by activator auxin response factors (aARFs) that are released from Auxin/Indole-3-Acetic Acid (Aux/IAA) repressors and directly activate auxin-responsive genes. However, it remains to be answered how repressor ARFs (rARFs) exert their repression function. In this study, we assessed the molecular and biological functions of two putative co-repressor-binding motifs (EAR and RLFGI) of ARF2 (a rARF) in Arabidopsis thaliana. In the yeast two-hybrid assay, the EAR mutation moderately and the RLFGI mutation, or both motifs, almost completely disrupted the interaction between the co-repressor TOPLESS (TPL) and the repressive motifs-containing middle domain (MD) of ARF2. The ARF2-MD interacted not only with TPL but also with TPL homologs (TPRs). Root hair-specific overexpression of rARFs (ARF1-4, 9-11, and 16) considerably inhibited root hair growth, suggesting that rARFs generally function as repressors in the auxin-responsive root hair single cell. Individual mutation of the ARF2 EAR or RLFGI motif slightly and both mutations greatly compromised ARF2-mediated inhibition of root hair growth and auxin-responsive gene expression. In addition, flowering time and seed size, two representative arf2 mutant phenotypes, were examined to assess the function of the repressive motifs in mutant-complementation experiments. ARF2-mediated inhibition of flowering and seed growth was suppressed considerably by the individual mutation of EAR or RLFGI and almost completely by both mutations. These results suggest that EAR and RLFGI work together as major repressive motifs for ARF2 to recruit TPL/TPR co-repressors and to exhibit its repressive biological functions.

10.
Proc Natl Acad Sci U S A ; 114(20): 5289-5294, 2017 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-28461488

RESUMEN

Root hair polar growth is endogenously controlled by auxin and sustained by oscillating levels of reactive oxygen species (ROS). These cells extend several hundred-fold their original size toward signals important for plant survival. Although their final cell size is of fundamental importance, the molecular mechanisms that control it remain largely unknown. Here we show that ROS production is controlled by the transcription factor RSL4, which in turn is transcriptionally regulated by auxin through several auxin response factors (ARFs). In this manner, auxin controls ROS-mediated polar growth by activating RSL4, which then up-regulates the expression of genes encoding NADPH oxidases (also known as RESPIRATORY BURST OXIDASE HOMOLOG proteins) and class III peroxidases, which catalyze ROS production. Chemical or genetic interference with ROS balance or peroxidase activity affects root hair final cell size. Overall, our findings establish a molecular link between auxin and ROS-mediated polar root hair growth.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas de Arabidopsis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Regulación de la Expresión Génica de las Plantas , NADPH Oxidasas/metabolismo , Peroxidasas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Factores de Transcripción/metabolismo
11.
Plant Signal Behav ; 12(3): e1294300, 2017 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-28277973

RESUMEN

The root hair development of vascular plants can be divided into 2 major processes, fate determination and hair morphogenesis, and the latter should be governed by the former so as to express the morphogenetic toolkits in a root hair-specific manner. Vascular plants, depending on taxa, show different fate-determining mechanisms for hair cell/non-hair cell fates, which leads to a question whether the downstream mophogenetic regulatory module is diverged accordingly to the upstream fate determiners or not. Our study demonstrates that the module of a transcription factor and a root hair-specific cis-element (RHE) for root hair-specific expression of morphogenetic toolkit genes is conserved in spite of different fate-determing mechanisms.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
12.
Plant Cell ; 29(1): 39-53, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28087829

RESUMEN

ROOT HAIR SPECIFIC (RHS) genes, which contain the root hair-specific cis-element (RHE) in their regulatory regions, function in root hair morphogenesis. Here, we demonstrate that an Arabidopsis thaliana basic helix-loop-helix transcription factor, ROOT HAIR DEFECTVE SIX-LIKE4 (RSL4), directly binds to the RHE in vitro and in vivo, upregulates RHS genes, and stimulates root hair formation in Arabidopsis. Orthologs of RSL4 from a eudicot (poplar [Populus trichocarpa]), a monocot (rice [Oryza sativa]), and a lycophyte (Selaginella moellendorffii) each restored root hair growth in the Arabidopsis rsl4 mutant. In addition, the rice and S. moellendorffii RSL4 orthologs bound to the RHE in in vitro and in vivo assays. The RSL4 orthologous genes contain RHEs in their promoter regions, and RSL4 was able to bind to its own RHEs in vivo and amplify its own expression. This process likely provides a positive feedback loop for sustainable root hair growth. When RSL4 and its orthologs were expressed in cells in non-root-hair positions, they induced ectopic root hair growth, indicating that these genes are sufficient to specify root hair formation. Our results suggest that RSL4 mediates root hair formation by regulating RHS genes and that this mechanism is conserved throughout the tracheophyte (vascular plant) lineage.


Asunto(s)
Proteínas de Arabidopsis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Regulación de la Expresión Génica de las Plantas , Raíces de Plantas/genética , Estructuras de las Plantas/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/clasificación , Proteínas de Arabidopsis/metabolismo , Secuencia de Bases , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/clasificación , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Microscopía Confocal , Oryza/genética , Oryza/metabolismo , Filogenia , Raíces de Plantas/metabolismo , Estructuras de las Plantas/metabolismo , Plantas Modificadas Genéticamente , Populus/genética , Populus/metabolismo , Regiones Promotoras Genéticas/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Selaginellaceae/genética , Selaginellaceae/metabolismo , Homología de Secuencia de Ácido Nucleico
13.
Front Plant Sci ; 7: 1479, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27733863

RESUMEN

Asymmetrically localized PIN-FORMED (PIN) auxin efflux carriers play key roles in regulating directional intercellular auxin movement, generating local auxin gradients, and diverse auxin-mediated growth and development. The polar localization of PINs is controlled by phosphorylation in the central hydrophilic loop (HL) of PINs. Although the M3 phosphorylation site, including phosphorylatable 5 Ser/Thr residues, is conserved among long HL-PINs, its native role has only been characterized in PIN3. In this study, we examined the role of M3 phosphorylation site of PIN1, PIN2, and PIN7 in intracellular trafficking, phosphorylation, and biological functions of those PINs in their native expressing tissues. Phosphorylation-defective mutations of the phosphorylatable residues in the M3 site of PIN1-HL led to alteration in subcellular polarity of PIN1 and caused defects in PIN1-mediated biological functions such as cotyledon development, phyllotaxy of vegetative leaves, and development of reproductive organs. The M3 mutations of PIN7 interfered with its polar recycling in the root columella cell in response to gravity stimulus and partially disrupted root gravitropism. On the other hand, the M3 site of PIN2 was shown to be necessary for its targeting to the plasma membrane. In vitro phosphorylation assay showed that the M3 phosphorylation residues of PIN1 are the partial targets by PINOID kinase. Our data suggest that the M3 phosphorylation site is functionally conserved among long HL-PINs by playing roles for their subcellular trafficking and auxin-mediated developmental processes.

14.
Plant Signal Behav ; 11(9): e1226454, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27562432

RESUMEN

Coordination of the events between cytoplasm and cell wall is necessary for the proper cellular activity of plants. Cell wall-associated receptor kinases are likely to play the interface for the extra-to-internal signaling process. Arabidopsis ROOT HAIR SPECIFIC 10 (RHS10), belonging to the proline-rich extensin-like receptor kinase (PERK) family, is a Ser/Thr protein kinase with arabinogalactan protein (AGP) motifs in its extracellular domain (ECD). RHS10 and other angiosperm PERK homologs are inhibitory in root hair tip growth. The ECD deletion analysis of RHS10 indicates that proline residues, including AGP motifs, in the ECD are required for the root hair inhibition. The kinase domain of RHS10 physically interacts with an RNase (RNS2), and both RHS10 and RNS2 show the consistent genetic interaction in terms of root hair phenotype and root RNA levels. The root hair-inhibitory function of the cell wall-associated receptor kinase RHS10 may provide a negative feedback tool between cell wall and cytoplasm for the determination of proper length of the root hair.


Asunto(s)
Arabidopsis/metabolismo , Mucoproteínas/metabolismo , Raíces de Plantas/metabolismo , Proteínas Quinasas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Pared Celular/genética , Pared Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Mucoproteínas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/genética , Proteínas Quinasas/genética
15.
J Exp Bot ; 67(6): 2007-22, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26884603

RESUMEN

Plant cell growth is restricted by the cell wall, and cell wall dynamics act as signals for the cytoplasmic and nuclear events of cell growth. Among various receptor kinases, ROOT HAIR SPECIFIC 10 (RHS10) belongs to a poorly known receptor kinase subfamily with a proline-rich extracellular domain. Here, we report that RHS10 defines the root hair length of Arabidopsis thaliana by negatively regulating hair growth. RHS10 modulates the duration of root hair growth rather than the growth rate. As poplar and rice RHS10 orthologs also showed a root hair-inhibitory function, this receptor kinase-mediated function appears to be conserved in angiosperms. RHS10 showed a strong association with the cell wall, most probably through its extracellular proline-rich domain (ECD). Deletion analysis of the ECD demonstrated that a minimal extracellular part, which includes a few proline residues, is required for RHS10-mediated root hair inhibition. RHS10 suppressed the accumulation of reactive oxygen species (ROS) in the root, which are necessary for root hair growth. A yeast two-hybrid screening identified an RNase (RNS2) as a putative downstream target of RHS10. Accordingly, RHS10 overexpression decreased and RHS10 loss increased RNA levels in the hair-growing root region. Our results suggest that RHS10 mediates cell wall-associated signals to maintain proper root hair length, at least in part by regulating RNA catabolism and ROS accumulation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Pared Celular/enzimología , Raíces de Plantas/enzimología , Raíces de Plantas/crecimiento & desarrollo , Prolina/metabolismo , Proteínas Quinasas/metabolismo , Secuencia de Aminoácidos , Arabidopsis/efectos de los fármacos , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Secuencia de Bases , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Pared Celular/efectos de los fármacos , Secuencia Conservada , Epistasis Genética/efectos de los fármacos , Etilenos/farmacología , Genes de Plantas , Ácidos Indolacéticos/farmacología , Modelos Biológicos , Raíces de Plantas/citología , Raíces de Plantas/efectos de los fármacos , Dominios Proteicos , Proteínas Quinasas/química , Proteínas Quinasas/genética , Transporte de Proteínas/efectos de los fármacos , ARN de Planta/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Eliminación de Secuencia , Fracciones Subcelulares/efectos de los fármacos , Fracciones Subcelulares/metabolismo
16.
Plant Cell ; 26(4): 1570-1585, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24692422

RESUMEN

Different PIN-FORMED proteins (PINs) contribute to intercellular and intracellular auxin transport, depending on their distinctive subcellular localizations. Arabidopsis thaliana PINs with a long hydrophilic loop (HL) (PIN1 to PIN4 and PIN7; long PINs) localize predominantly to the plasma membrane (PM), whereas short PINs (PIN5 and PIN8) localize predominantly to internal compartments. However, the subcellular localization of the short PINs has been observed mostly for PINs ectopically expressed in different cell types, and the role of the HL in PIN trafficking remains unclear. Here, we tested whether a long PIN-HL can provide its original molecular cues to a short PIN by transplanting the HL. The transplanted long PIN2-HL was sufficient for phosphorylation and PM trafficking of the chimeric PIN5:PIN2-HL but failed to provide the characteristic polarity of PIN2. Unlike previous observations, PIN5 showed clear PM localization in diverse cell types where PIN5 is natively or ectopically expressed and even polar PM localization in one cell type. Furthermore, in the root epidermis, the subcellular localization of PIN5 switched from PM to internal compartments according to the developmental stage. Our results suggest that the long PIN-HL is partially modular for the trafficking behavior of PINs and that the intracellular trafficking of PIN is plastic depending on cell type and developmental stage.

17.
Nat Genet ; 46(3): 270-8, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24441736

RESUMEN

Hot pepper (Capsicum annuum), one of the oldest domesticated crops in the Americas, is the most widely grown spice crop in the world. We report whole-genome sequencing and assembly of the hot pepper (Mexican landrace of Capsicum annuum cv. CM334) at 186.6× coverage. We also report resequencing of two cultivated peppers and de novo sequencing of the wild species Capsicum chinense. The genome size of the hot pepper was approximately fourfold larger than that of its close relative tomato, and the genome showed an accumulation of Gypsy and Caulimoviridae family elements. Integrative genomic and transcriptomic analyses suggested that change in gene expression and neofunctionalization of capsaicin synthase have shaped capsaicinoid biosynthesis. We found differential molecular patterns of ripening regulators and ethylene synthesis in hot pepper and tomato. The reference genome will serve as a platform for improving the nutritional and medicinal values of Capsicum species.


Asunto(s)
Capsicum/genética , Genoma de Planta , Capsaicina/metabolismo , Capsicum/crecimiento & desarrollo , Capsicum/metabolismo , Evolución Molecular , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Variación Genética , Tamaño del Genoma , Solanum lycopersicum/genética , Redes y Vías Metabólicas/genética , Datos de Secuencia Molecular , Familia de Multigenes , ARN de Planta/genética , Especificidad de la Especie
18.
Front Plant Sci ; 4: 448, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24273547

RESUMEN

The root hair development is controlled by diverse factors such as fate-determining developmental cues, auxin-related environmental factors, and hormones. In particular, the soil environmental factors are important as they maximize their absorption by modulating root hair development. These environmental factors affect the root hair developmental process by making use of diverse hormones. These hormonal factors interact with each other to modulate root hair development in which auxin appears to form the most intensive networks with the pathways from environmental factors and hormones. Moreover, auxin action for root hair development is genetically located immediately upstream of the root hair-morphogenetic genes. These observations suggest that auxin plays as an organizing node for environmental/hormonal pathways to modulate root hair growth.

19.
BMC Plant Biol ; 13: 189, 2013 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-24274232

RESUMEN

BACKGROUND: PIN-FORMED (PIN) efflux carriers contribute to polar auxin transport and plant development by exhibiting dynamic and diverse asymmetrical localization patterns in the plasma membrane (PM). Phosphorylation of the central hydrophilic loop (HL) of PINs has been implicated in the regulation of PIN trafficking. Recently, we reported that a phosphorylatable motif (M3) in the PIN3-HL is necessary for the polarity, intracellular trafficking, and biological functions of PIN3. In this study, using the root hair system for PIN activity assay, we investigated whether this motif has been functionally conserved among long-HL PINs. RESULTS: Root hair-specific overexpression of wild-type PIN1, 2, or 7 greatly inhibited root hair growth by depleting auxin levels in the root hair cell, whereas overexpression of M3 phosphorylation-defective PIN mutants failed to inhibit root hair growth. Consistent with this root hair phenotype, the PM localization of M3 phosphorylation-defective PIN1 and PIN7 was partially disrupted, resulting in less auxin efflux and restoration of root hair growth. Partial formation of brefeldin A-compartments in these phosphorylation-mutant PIN lines also suggested that their PM targeting was partially disrupted. On the other hand, compared with the PIN1 and PIN7 mutant proteins, M3-phosphorylation-defective PIN2 proteins were almost undetectable. However, the mutant PIN2 protein levels were restored by wortmannin treatment almost to the wild-type PIN2 level, indicating that the M3 motif of PIN2, unlike that of other PINs, is implicated in PIN2 trafficking to the vacuolar lytic pathway. CONCLUSIONS: These results suggest that the M3 phosphorylation motif has been functionally conserved to modulate the intracellular trafficking of long-HL PINs, but its specific function in trafficking has diverged among PIN members.


Asunto(s)
Arabidopsis/metabolismo , Raíces de Plantas/metabolismo , Androstadienos/farmacología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fosforilación , Transporte de Proteínas/efectos de los fármacos , Wortmanina
20.
Plant Signal Behav ; 8(2): e22990, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23221777

RESUMEN

Plant ATP-binding cassette (ABC) transporters consist of largest family members among many other membrane transporters and have been implicated in various functions such as detoxification, disease resistance and transport of diverse substrates. Of the ABC-B/multi-drug resistance/P-glycoprotein (ABCB/MDR/PGP) subfamily, at least five members have been reported to mediate cellular transport of auxin or auxin derivatives. Although single mutant phenotypes of these genes are milder than PIN-FORMED (PIN) mutants, those ABCBs significantly contribute for the directional auxin movement in the tissue-level auxin-transporting assay. Uniformly localized ABCB proteins in the plasma membrane (PM) are generaly found in different plant species and stably retained regardless of internal and external signals. This implies that these ABCB proteins may play as basal auxin transporters.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Transporte Biológico/fisiología , Regulación de la Expresión Génica de las Plantas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...